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Motivation

e Online influence maximization (OIM)

— A sequential decision-making problem
— Selects a set of users and provides them with free products
— Receives feedback from the information diffusion process

e Common influence propagation models: independent cascade (IC) model, linear threshold (LT)
model

e Existing works mainly focus on the IC model with edge-level feedback

— The IC model assumes the information spreads through each edge independently.
— The edge-level feedback means that the learner could observe the influence status of each
edge once its start node 1s influenced.

e The LT model characterizes the herd behavior that often occurs in real information diffusion
process, that with more active in-neighbors, a user becomes much more likely to be influenced.

Setting

e Graph G = (V, F): V is the set of users (nodes) and FE is the set of relationships (edges)
between users

—Each edge e, € E is associated with a weight w(ey, ) representing the influence ability of
U on v

—Letn = |V|,m = |E|, D to be node number, edge number and the diameter respectively,
where the diameter of the graph 1s defined as the maximum (directed) distance between the
pair of nodes in any connected component.

e The diffusion process starting from seed set .S
— Each node is assigned with a threshold 6, which is independently uniformly drawn from
0, 1] and characterizes the susceptibility level of v.
— Let S be the set of activated nodes by the end of time 7.

x At time 7 = 0, only nodes in the seed set are activated: Sg = S.

« At time 7 + 1 with 7 > 0, for any node v ¢ S that has not been activated yet, it will
be activated if the aggregated influence of its active in-neighbors exceeds its threshold:
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* Such diffusion process will last at most D time steps.

— The size of the influenced nodes: (S, w, ) = |Sp|

—Let (S, w) = E|r(S,w, 0)] be the influence spread of seed set S where the expectation is
taken over all random variables 6,,’s.

e The (offline) IM problem

— Aims at finding the seed set S with the size at most /& under weight vector w to maximize
the influence spread, maxg. g|< (5, w).

— This problem 1s NP-hard under the LT model but can be approximately solved.

— Let Opt,, be the maximum influence spread under weight vector w

e The online IM (OIM) problem, in each round ¢:

— The learner chooses a set of nodes S; with limited size K

— The learner observes (full) node-level feedback Sy, St 1, - - -, St p, where Sy ; represents the
set of active nodes by time step ¢+ € [D] in the diffusion process in this round.

— The learner updates its knowledge on unknown weights using the observed feedback, which
helps the seed set selection 1in the next round.

e The goal of the learner 1s to minimize the expected cumulative 7)-scaled regret
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Algorithm

o7 (v):=mins {7 =0,...,D: N(v)NS; # 0} is the earliest time step when node v has active
neighbors, set 71(v) = D + 1 if node v has no active in-neighbor until the diffusion ends.
o (V) = {7’ =0,....,D: x(E;_9(v) "w, < 6, < X(ET_l(v))TwU} is the time step that node

v is influenced, set »(v) = D + 1 if node v is finally not influenced after the information
diffusion ends.

e E;(v) = {eyr:ue€ N(v)NS;} is the set of incoming edges associated with active in-
neighbors of v at time step 7.

LT-LinUCB Algorithm:

1. Input: Graph G = (V, E); seed set cardinality K'; exploration parameter p; ,, > 0 for any ¢, v;
offline oracle PairOracle

2. Initialize: My, + I € RINWIXINWI by o0 e RINWIXT 4 o 0 € RINWIXT for any
nodev € V

.fort=1,2.3,...

N@)lxL, |

4. Compute the confidence ellipsoid Ct ;, = {wq’j e [0, 1] w{} — Wty

for any node v € V'

|Mt—1,v < ﬂt,v}

5. Compute the pair (S¢, w¢) by PairOracle with confidence set C; = {Ct,v}v <1 and seed set
cardinality K

6. Select the seed set Sy and observe the feedback
7. //Update

8. fornodev eV

9 Initialize A;, « 0 € RINWIXL 4, 0 e R

10. Uniformly randomly choose 7 € {7": 74 1(v) < 7/ < 7 9(v) — 1}

11. if v is influenced and 7 = 74 o(v) — 1

12. Aty =x (Et7(v)), yto=1

13. else if 7 = 7 (v), ..., ™(v) —20r 7 = »(v) — 1 but v is not influenced
14. At =x (Er+(v), ytp=0

15. My <= My 4+ At,vA;IUa btw < bt—10 + YtwAtw, Wiy = Mtjvlbt,v

Analysis

e For the seed set .5, define the set of all nodes related to a node v, VSW, to be the set of nodes
that are on any path from S to v in graph G.

e For seed set S and node v € V' \ 5, define Ng ,, := ZveV\S ]1{u S ngv} < n — K to be the
number of nodes that u 1s relevant to.
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e Then for the vector Ng = (Ng ,)ycy, define the upper bound of its L?-norm over all feasible
seed sets

Y(G) = max [y Nz, <(n—K)p/n=0n"?),
SeA :
ueV
which 1s a constant related to the graph.

Theorem 1 (GOM bounded smoothness). For any two weight vectors w,w’ € [0,1]™ with
D ue N(v) w(eyv) < 1, the difference of their influence spread for any seed set S can be bounded
as

TQ(U)—l N

‘T(S, w') — (S, w)’ <E y: y: Z (w'(e) — w(e))

LoeVA\Su€Vs, 7=m(u) |eeF(u) -

where the definitions of T1(u), To(u) and E-(u) are all under weight vector w, and the expectation
is taken over the randomness of the thresholds on nodes.

Theorem 2 (Upper Bound). Suppose the LT-LinUCB runs with an («, (3)-approximation

PairOracle and parameter pt, = pt = \/n log(1 4 tn) + QIOg% + /n for any node v € V.
Then the a3-scaled regret satisfies

R(T) < 4ppy(G)D+/mnT log(1 +T)/log(1 +n) +né - T(n — k).

When 6 = 1/(n/T), R(T) < C - v(G) DnvmT log(T) for some universal constant C.

Conclusions

e Formulate the problem of OIM under LT model with node-level feedback and design how to
distill effective information from observations.

e Prove a novel GOM bounded smoothness property for the spread function.

e Propose LT-LinUCB algorithm with rigorous theoretical analysis and show a competitive regret
bound of O(poly(m)v/T In(T)).

e Design OIM-ETC algorithm with theoretical analysis on its distribution-dependent and
distribution-independent regret bounds.

— Efficient, applies to both LT and IC models, and has less requirements on feedback and offline
computation.

e Future work: The OIM problem under IC model with node-level feedback; Applying Thomp-
son sampling to influence maximization
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